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Abstract

Several neurological diseases are related to oxidative stress (OS) and neurotoxicity. Considering that physical exercise may exert beneficial
effects on antioxidant defenses, our objective was to evaluate the influence of a swimming exercise on an OS animal model (reserpine-induced
orofacial dyskinesia). In this model, the increased dopamine metabolism can generate OS and neuronal degeneration, causing involuntary
movements. The increase in vacuous chewing movements and facial twitching caused by reserpine (1 mg/kg sc) was partially prevented by
exercise. An increase in catalase activity and a decrease in GSH levels were observed in the striatum. Physical training did not change the effects
of reserpine on catalase, however it partially recovered GSH. Exercise per se caused a significant GSH decrease. There was a positive correlation
between catalase and OD (r=0.41; r=0.47, Pb0.05) and a negative correlation between GSH and OD (r=0.61; r=0.71, Pb0.05). These results
reveal the benefit of exercise in attenuating the motor disorder related to OS.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Physical activity is recognized as an important component of
a healthy life style and is recommended by clinicians and
scientists (Donaldson, 2000). The favorable effects of exercise
on the cardiovascular system and on cognition suggest its in-
fluence on brain function (Cotman and Engesser-Cesar, 2002;
Fordyce and Wehner, 1993; Hicks and Birren, 1970). Altera-
tions elicited by exercise are associated with improvements in a
variety of age-related diseases. However, the mechanisms are
not yet well understood (Blair et al., 1995; Gündüz et al., 2004;
Holloszy, 1993). Furthermore, habitual exercise has been
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related to OS resistance and the inhibition of carcinogenesis
at the initiation stage (Nakatani et al., 2005).

Exercise is also associated with an increase of oxygen uptake
(Sen, 2001), of which as much as 2% may be converted to
reactive oxygen species (ROS) (Inoue et al., 2003; Wickens,
2001). However, this increased uptake of oxygen that occurs in
the body is not observed in the brain and it has been reported
that chronic exercise caused an increase in the brain's anti-
oxidant defenses (Liu et al., 2000). The few studies available on
the effect of exercise on oxidative damage or the antioxidant
status in brain show conflicting results (Asha and Kiran, 2004;
Radak et al., 1995; Somani et al., 1995). Suzuki et al. (1983)
reported that voluntary exercise increased the lipid peroxidation
in the brain of rats. On the other hand, regular exercise atten-
uated an age-associated decline in memory and reduced the
accumulation of proteins affected by oxidative damage in the
brain (Radak et al., 2001a,b). In line with this, regular physical
exercise has been related to an increase in the number of new
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hippocampal cells (Van Praag et al., 1999a,b), an increase in
brain plasticity (Cotman and Berchtold, 2002), an increase in
the production of neurotrophic factors (Neeper et al., 1996;
Ogonovszky et al., 2005), and an increase in learning and
memory (Fisher et al., 2000; Ogonovszky et al., 2005; Radak et
al., 2001a, 2006; Van Praag et al., 1999a).

Of particular importance, the brain is more susceptible to
oxidative damage when compared to other organs or systems
(Halliwell and Gutteridge, 1999), mainly because it contains
high levels of membrane lipids, excitotoxic amino acids, low
levels of antioxidant defenses and autoxidizable neurotransmit-
ters. For instance, dopamine (DA) reacts with molecular oxygen
to form dopamine-quinones which can deplete glutathione,
generating ROS during this process (Graham, 1978). When
the production of ROS exceeds the ability of the antioxidant
system to eliminate them, oxidative damage results (Jenkins and
Goldfarb, 1993). Considering the OS, reserpine is a monoamine
depletor that exerts a blockade on the vesicular monoamine
transporter (VMAT) for neuronal transmission or storage, pro-
moting dopamine-autoxidation and oxidative catabolism by
monoamine oxidase (MAO) (Fuentes et al., 2007). This accel-
erated mechanism leads to the formation of dopamine-quinones
and hydrogen peroxide, related to the OS process (Abílio et al.,
2002, 2003a; Bilzka and Dubiel, 2007; Burger et al., 2003;
Calvente et al., 2002; Naidu et al., 2004; Spina and Cohen,
1988, 1989). In particular, areas of the brain, such as the basal
ganglia, are rich in monoamines and therefore more vulnerable
to free radical damage that may result in OS (Lohr et al., 2003).
The neuronal damage of the basal ganglia is associated with
damage of voluntary movements (Dawson et al., 2000; Graybiel
et al., 1995) and related to different diseases such as
Huntington, ballism, Parkinson and tardive dyskinesia (Albin
et al., 1989; Andreassen and Jorgensen, 2000; Bartzokis et al.,
1999; Fahn and Cohen, 1992; Gilgun-Sherki et al., 2001; Lohr
et al., 1990).

Various laboratories have demonstrated the development of a
movement disorder upon the administration of reserpine in rats/
mice (Abilio et al., 2002, 2003b, 2004; Bergamo et al., 1997;
Burger et al., 2003, 2004, 2005b; Calvente et al., 2002;
Carvalho et al., 2003; Castro et al., 2006; Colpaert, 1987;
Dawson et al., 2000; Dutra et al., 2002; Menzaghi et al., 1997;
Naidu et al., 2004; Neisewander et al., 1994; Peixoto et al.,
2005; Queiroz and Frussa-Filho, 1999; Raghavendra et al.,
2001; Silverdale et al., 2001; Sussman et al., 1997; Vital et al.,
1997). This animal model, known as orofacial dyskinesia, has
been related to OS in the basal ganglia (striatum) and is atten-
uated and prevented by antioxidant substances such as mela-
tonin, ebselen and quercetin (Abílio et al., 2002, 2003a,b;
Burger et al., 2003, 2004, 2005b; Faria et al., 2005; Naidu et al.,
2004; Raghavendra et al., 2001).

As the brain is particularly vulnerable to free radical damage
and the enhancement of OS has been associated with various
neurodegenerative diseases, we investigated the effects of an
exercise program in an animal model of OS and its relationship
with the antioxidant defenses. Smith and Zigmond (2003) con-
sidered that exercise afforded protection against a variety
of diseases including Parkinson and dopaminergic degenera-
tion. In the same way, Howells et al. (2005) demonstrated
that voluntary exercise afforded neuroprotection in a Parkin-
son's disease rat model. With this in mind, our objective is to
evaluate whether chronic physical exercise is capable of at-
tenuating or preventing neuronal damage related to reserpine-
induced OS.

2. Method

2.1. Drugs

Reserpine (methyl reserpate 3,4, 5-trimethoxybenzoic acid
ester—Sigma Chemical) was dissolved in glacial acetic acid
and then diluted to a final concentration of 0.5% acetic acid with
distilled water. The vehicle consisted of a 0.5% acetic acid
solution. These solutions were injected subcutaneously (sc) in a
volume of 1.0 ml/kg body weight.

2.2. Animals

MaleWistar rats weighing 270–320 g (about 3-month of age)
were used. Groups of six animals were kept in Plexiglas cages
with free access to food and water in a room with controlled
temperature (22–23 °C) and on a 12 h-light/dark cycle with
lights on at 7:00 a.m. The animals were maintained and used in
accordance to the guidelines of the Committee on Care and Use
of Experimental Animal Resources, School of Veterinary
Medicine and Animal Science of the University of São Paulo,
Brazil. The rats were randomly assigned into four groups:
sedentary-control (SC), sedentary-reserpine (SR), exercise-
control (EC), exercise-reserpine (ER).

2.3. Training and experimental procedure

All rats from the exercise groups were subjected to
swimming in a plastic container (depth 45 cm) and continuously
supervised, with the water temperature set to 28 °C±1 °C, 1 h/
day, 5 times per week during 8 weeks. The swimming duration
increased about 15 min every day until it reached 60 min per
day in the first week, which was maintained until the sixth
week; in the seventh and eighth week they swam 90 min/day.
The control rats (sedentary) were transported to the experimen-
tal room and placed in the swimming pool for a short time
(3 min), to force them to get wet, however, they were not in
contact with water for the same time that the swimmers were.
One day after the last training, all the animals were treated with
vehicle or reserpine solution. The drugs were then subcutane-
ously administered, for 3 days every other day, as follows:

SC sedentary rats injected with 0.5% acetic acid solution
(vehicle for reserpine);

SR sedentary rats injected with 1 mg/kg reserpine solution;
EC exercised rats injected with 0.5% acetic acid solution;
ER exercised rats injected with 1 mg/kg reserpine solution.

On the fourth day, 24 h after the second reserpine or vehicle
injection, all the rats were observed for the quantification of
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orofacial dyskinesia. The animals were decapitated 24 h after
behavioral measurements.

The animal's body weights were monitored once a week
during the experiment.

2.4. Behavioral testing

With the objective of analyzing the development of
reserpine-induced orofacial dyskinesia, the rats were submitted
to behavioral observation as follows: Rats were placed
individually in cages (20×20×19 cm) containing mirrors
under the floor and behind the back wall of the cage to allow
behavioral quantification when the animal was faced away from
the observer. To quantify the occurrence of oral dyskinesia, the
incidence of vacuous chewing movements (VCM) and the
duration of facial twitching (FT) were recorded during 10 min.
Observers were blind to the drug treatment. In a preliminary
study (using 5 control and 10 rats treated with reserpine) of
interrater reliability, we found that the use of this method of
observation and definition for the parameters evaluated usually
resulted in N90 and 91% agreement between 4 different ob-
servers for vacuous chewing and duration of facial twitching,
respectively. All the calculated P values were significant for
Pb0.05.

2.5. Biochemical assays

The brains were removed immediately after decapitation, put
on ice and cut coronally at the caudal border of the olfactory
tubercle. The striatum was dissected from the anterior part and
separated into two parts. The right striatum was homogenized in
10 volumes (w/v) of 0.1 M Tris–HCl, pH 7.4, centrifuged for
Fig. 1. Effects of administration of reserpine (1.0 mg/kg sc every other day, for 3 day
(ER) or (EC) for vacuous chewing frequency (A) and duration of twitching of the fac
analysis of variance followed by Duncan's test. ⁎ indicates a significant difference
exercised rats (EC) for Pb0.05, and # indicates a significant difference from reserpi
10 min at 3000 ×g, and used for catalase determination by
spectrophotometry (Aebi et al., 1995).

The left striatum was homogenized in 50 volumes (w/v) of
0.5 N perchloric acid and centrifuged under the same conditions
previously cited. The supernatant was used to measure reduced
glutathione (GSH). A volume of 130 μl of supernatant was
mixed with 500 μl of Tris–HCl 0.5 M. The derivatization of the
samples was carried out with 350 μl DTNB (5.5′-dithiobis(2-
nitro-benzoic acid) for high performance liquid chromatogra-
phy (Schott et al., in press).

2.6. Statistical analysis

Data were analyzed by two-way ANOVA (2 (sedentary/
exercise)×2 (control/reserpine) followed, when appropriate, by
univariate analysis and Duncan's multiple range test.

3. Results

Eight weeks of swimming did not cause a difference in body
weight between exercised and control animals, which is in
accordance with other research using swimming as an exercise
model (Gündüz et al., 2004; Radak et al., 2001a).

Two-way ANOVA of vacuous chewing frequency revealed a
significant main effect of reserpine [F(1, 20)=136.6, Pb0.001].
Univariate ANOVA followed by Duncan's multiple range
test revealed that reserpine (SR) and exercise+ reserpine (ER)-
treated groups displayed an increase in vacuous chewing fre-
quency when compared to control (SC) and exercise-treated
(EC) groups (Fig. 1A).

Analyses of the duration of facial twitching yielded a
significant main effect of reserpine [F(1,20)=57.6, Pb0.001],
s) (SR) or vehicle (SC) on sedentary rats and rats submitted to exercise training
ial musculature (in seconds) (B). Data (mean±SEM) were analyzed by one-way
from control group (SC) for Pb0.001, + indicates a significant difference from
ne-treated animals (SR) for Pb0.05 (Duncan's multiple range test).



Table 1
Catalase activity (mU/g tissue) and GSH levels (mM/g tissue) in the striatum of
rats as the result of chronic exercise training

SC SR EC ER

n=6 n=6 n=6 n=6

Catalase activity 1.95±0.16 2.51±0.16⁎ 1.81±0.1 2.21±0.13
GSH levels 3.17±0.12 1.26±0.1⁎⁎ 2.18±0.1⁎⁎ 2.07±0.13+

Values are means±SEM, ⁎Pb0.05, ⁎⁎Pb0.001, differences from sedentary-
control group (SC); +Pb0.001, difference from sedentary-reserpine group (SR)
(Duncan's multiple range test).

468 A.M. Teixeira et al. / Pharmacology, Biochemistry and Behavior 88 (2008) 465–472
exercise [F(1, 20)=6.4, Pb0.05] and a significant reserpi-
ne×exercise interaction [F(1, 20)=7.2, Pb0.05]. Univariate
ANOVA followed by Duncan's multiple range test revealed that
reserpine considerably increased the duration of facial twitching
and that the exercise training partially reversed the effect of
reserpine. In fact, the duration of facial twitching for the
exercise+ reserpine-treated animals (ER) was significantly
lower than that of rats treated with reserpine (SR) and sig-
nificantly higher than that of control (SC) or exercise-treated
(EC) animals (Fig. 1B).

Two-way ANOVA of catalase activity is shown in Table 1.
Two-way ANOVA revealed a significant main effect of reser-
pine on catalase activity [F(1, 20)=12.8, Pb0.05]. Univariate
ANOVA followed by Duncan's multiple range test revealed that
reserpine significantly increased catalase activity (SR) and that
chronic exercise training did not reverse the effect of reserpine
(ER).

Two-way ANOVA for GSH (Table 1) revealed a significant
reserpine effect [F(1, 20)=109.22, Pb0.001] as well as exer-
cise× reserpine interaction [F(1, 20)=86.74, Pb0.001]. Post-
hoc analysis revealed that rats treated with reserpine (SR),
exercise (EC) and exercise+ reserpine (ER) presented a de-
Fig. 2. Linear regression analysis between vacuous chewing frequency, facial twitchin
every other day, for 3 days) following 8 weeks of chronic exercise training. (Statistic
0.47 respectively).
crease in GSH levels when compared to controls (SC). The
animals that received the exercise-reserpine (ER) co-treatment
showed a partial recovery of GSH levels, when compared to the
group treated with reserpine (SR).

Statistical analyses revealed a significant positive correlation
between vacuous chewing frequency (r=0.41, Pb0.05, Fig. 2)
and facial twitching (r=0.47, Pb0.05, Fig. 2) with striatal
catalase activity of rats. To the contrary, regression analyses
between vacuous chewing frequency (r=0.61, P=0.001 Fig. 3)
and facial twitching (r=0.71, Pb0.001, Fig. 3) with GSH levels
in the striatum of rats revealed a significant negative correlation.

4. Discussion

The results of the present study clearly indicate that moderate
chronic physical exercise is capable of exerting a protective role
against reserpine-induced orofacial dyskinesia, shown through
increased vacuous chewing movements and facial twitching.
Exercise training partially reversed the increase in FT duration
and, interestingly, did not change VCM frequency. This result is
in accordance with other findings from our laboratory, where
ebselen (an antioxidant agent) reversed the reserpine-induced
increase in FT but did not modify VCM (Burger et al., 2003).

Of particular interest for the animal model chosen here,
different laboratories have associated OS with neurodegenera-
tion and movement disorders (Cadet et al., 1986, Cadet and
Kahler, 1994; Naidu et al., 2003; Post et al., 1998; Sagara,
1998;), and have searched for antioxidant substances (Abílio
et al., 2002, 2003a,b; Burger et al., 2003, 2005a; Dabiri et al.,
1994; Egan et al., 1992; Faria et al., 2005; Naidu et al., 2003;
Raghavendra et al., 2001; Singh et al., 2003). In fact, Sussman
et al. (1997) showed that reserpine administration causes a
decrease in striatal dopamine levels and an increase in the
g and catalase activity in the striatum of rats treated with reserpine (1.0 mg/kg sc
al analysis revealed the following P significance levels for the r values: 0.41 and



Fig. 3. Linear regression analysis between vacuous chewing frequency, facial twitching and GSH levels in the striatum of rats treated with reserpine (1.0 mg/kg sc
every other day, for 3 days) following 8 weeks of chronic exercise training. (Statistical analysis revealed the following P significance levels for the r values: 0.61 and
0.71 respectively).
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metabolite of dopamine ratios (DOPAC/dopamine and HVA/
dopamine) in rats. Recently, we showed a negative relationship
between the glutamate transporter and the manifestation of
orofacial dyskinesia in rats exposed to reserpine or haloperidol
(Burger et al., 2005b), contributing to the relation between OS
and excitotoxicity. Coyle and Puttfarcken (1993) considered
that these events may very well act together, since they are
closely related. In line with this, the basal ganglia, involved in
motor function, is particularly more vulnerable to free radical
damage, since this brain region is rich in transition metals and
contains large amounts of catecholamines such as dopamine.
The antioxidant enzymes SOD, CAT and GSH-Px and the ratio
of GSH to oxidized glutathione (GSSG) are critical for pro-
tection against oxyradical toxicity. Glutathione in its reduced
state plays an important role in cellular protection against
damage from free radicals and oxyradicals (Werner and Cohen,
1993), and its deficiency leads to mitochondrial damage in the
brain (Jain et al., 1991).

Physical exercise early in life may be protective against the
development of Parkinson's disease (PD) (Brasted et al., 1999;
Sasco et al., 1992) and it ameliorates motor symptoms and
neurochemical deficits in rodent models of induced striatal
damage (Tillerson et al., 2003). In addition, symptoms of senile
dementia might be improved by exercise (Sutoo and Akiyama,
2003) and may also protect against a variety of neurodegen-
erative conditions (Döbrössy and Dunnett, 2003; Smith and
Zigmond, 2003).

Considering neurological diseases and OS, we found it in-
teresting to examine whether moderate chronic exercise training
changed the effect of repeated reserpine treatment in striatal
catalase activity and GSH levels.

The results presented here demonstrate that reserpine admin-
istration increased catalase activity in the striatum. Recently,
Abilio et al. (2004) and Faria et al. (2005) demonstrated the
critical role of this antioxidant enzyme in the development of
oral dyskinesia and OS. In line with this, it has been reported
that catalase activity is low in the brain (Gaunt and De Duve,
1991), however, chronic physical exercise did not modify its
activity. Of particular importance for the increase in free radicals
induced by reserpine, the increased catalase activity found here
may be a compensatory response or a signaling mechanism of
an oxidative damage (Gomez-Cabrera et al., 2006).

We also demonstrated that reserpine reduced striatal GSH
levels and this result occurred in parallel to an increase in
orofacial dyskinesia. This negative correlation reinforces the
role of free radicals in this putative animal model. In this study,
the effect of reserpine on GSH levels was partially prevented by
moderate physical training, although exercise per se reduced
these levels and deserves further investigations. Abilio et al.
(2003b) demonstrated a relationship between the development
of reserpine-induced orofacial dyskinesia and an increase of the
striatal GSSG/GSH ratio, where both effects were attenuated by
vitamin E. These results show clearly that physical training is
capable of exert beneficial effects on this important brain de-
fense system. Different from our results, Somani et al. (1995)
and Liu et al. (2000) did not observe the influence of exercise
training on GSH levels in the striatum of rats, although the
experimental procedures used were different. In reserpine-
treated mice, a considerable rise was reported in the striatal
GSSG level (Spina and Cohen, 1989) as well as in striatum and
prefrontal cortex of rats (Bilska and Dubiel, 2007).

Swimming was chosen as the model of exercise over the
treadmill since it is a natural behavior of rodents (Kramer et al.,
1993; Venditti and Di Meo, 1996). It is less stressful and can
prevent foot injury, which may generate ROS unrelated to
exercise (Venditti and Di Meo, 1996). In this sense, the exercise
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program and water temperature employed here were not stress
factors, as demonstrated by the reduced facial twitching. In
fact, the influence of stress has been demonstrated to elevate
orofacial movements (Andreassen et al., 1996; Egan et al.,
1996; Glenthoj et al., 1990, 1993; Glenthoj and Hemmingsen,
1991; Levy et al., 1987; Waddington, 1990). In addition, differ-
ent animal models have associated oxidative damage to stress,
including cold stress (Kaushik and Kaur, 2003; Liu et al., 1996;
Madrigal et al., 2001; Sahin and Gümüslü, 2004a,b; Voronych
and Iemel'ianenko 1994), corroborating with our results.

In conclusion, in this study, through the measurement of
orofacial dyskinesia we have demonstrated for the first time that
chronic moderate physical exercise reduces reserpine-induced
OS and attenuates the reserpine-induced decrease in striatal
GSH levels. These results establish the beneficial effect of
exercise on special clinical disorders associated with movement
such as Huntington and Parkinson diseases, tardive dyskinesia,
ballism and other neurological diseases.
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